
 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [391]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A HYBRID GENETIC ALGORITHM FOR THE LONGEST COMMON SUB-

SEQUENCE OF MULTIPLE SEQUENCES.
Aman Rawat, Pradeep Gehlot,Vishal Thakuria And Deepak Garg.

* Department of Computer Applications, NIT Kurukshetra, India

DOI: 10.5281/zenodo.1012555

ABSTRACT
Finding the longest common subsequence for multiple sequences are knows as k-LCS. For significant number

and longer length sequences the k-LCS turns out to be a NP-hard problem. To solve this problem, we have

developed a hybrid genetic algorithm that can be used to find an optimal solution in comparatively less time.

The results obtained by our solution are comparatively better than that of EA (Expansion-algorithm),

BNMAS(Best next maximal available symbol algorithm.), GA(Genetic algorithm) and ACO(Ant colony

optimization algorithm). Using Hill Climbing along with Genetic Algorithm proved to be a successful

development in finding the more optimal solution with less time complexity. As Genetic Algorithm has been

used, the number or length of the sequences doesn’t post to be a problem and a better subsequence is obtained

with each iteration.

KEYWORDS: Mutation, Crossover, Expansion Algorithm, Genetic Algorithm, Hill Climbing.

I. INTRODUCTION
We have as set S of sequences such that S= {s1, s1,….,sk}, among these k-sequences we need to find the longest

common subsequence. If subsequence X is present in all the sequences si (1 ≤ i ≤ k) then X is a CS (Common

Subsequence) for S. E.g. lets consider a set S ={s1 = GTACTGA, s2 = ATCTGCA, s3 = CTTAGTA}.The

sequences GA, ATA and TTGA are common sub-sequences in the strings s1, s2 and s3. TTGA is the longest

one in all three of the common sub-sequences, so TTGA is the LCS of S. Longest Common subsequence is a

popular problem in Computer Science [4, 5, 8, 13]. When no. of the sequences k is greater than 2 the k-LCS is

NP-hard even over the binary input [10].

When k is significantly large then using the exhaustive search to search all the Common Subsequence in k

sequences becomes challenging. Using DP (Dynamic programming) based algorithm needs O(n2) time and

space in solving 2-LCS[17]. Many hheuristic algorithms has also been given to solve k-LCS problem..Bonizzoni

et al. [1] proposed the EA (Expansion Algorithm). However, it wasn’t satisfactory in terms of performance.

BNMAS (best next for maximal available symbols) algorithm [7] is given by Huang et al. That is based upon

the frequency of occurrence of common characters in the input sequence. Several evolutionary algorithms have

also been proposed to ease the searching limitations. ACO (Ant colony optimization)algorithm for the k-LCS IS

given by Shyu-and-Tsai [11]. The characteristics of ant searching for food are used to find the common sub-

sequence in S [3].

Genetic Algorithm (GA) uses the crossover, mutation and selection which are the biologically-inspired process

to solve the k-LCS optimization problem. An algorithm was given by Chiang et al. for solving the k-LCS

problem [2]. The Common subsequence can be regarded as chromosomes and are evolved in further subsequent

generations using mutation and crossover process to find the improved common sub-sequence. Fitness function

is used as an evaluation mechanism based on it the better solutions from the chromosomes are preserved to

create the new generation and then its utilized for evolution in the next generations [12].

In our hybrid Genetic Algorithm we are optimizing the process of creation of initial population as well as using

hill climbing as a optimizing technique in the process of crossover and mutation. This will help us create a faster

and more optimal algorithm to find the solution to k-LCS.

http://www.ijesrt.com/

 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [392]

II. GENETIC ALGORITHM
Chiang et al. [2] developed Genetic Algorithm to solve the problem of k-LCS. In this algorithm the sequence

with the smallest length is chosen from the set containing the k sequences. We choose the smallest one as our

template sequence. In another words we randomly generate a template pattern of 1 or 0 is and by writing all the

characters corresponding to 1 in template sequence, the get the final result that is the template subsequence. For

a template sequence t = GATCTCGAGCAT and a template pattern tp = 101000011001, the generated template

sub-sequence till be ts =GTAGT.

The initial population set can be generated by taking k template patterns tp for k sequences in set S. All these k

template patterns tp are then evaluated against the fitness function. The template pattern having the best fitness

value i.e the highest non-negative value is chosen as the best solution for that generation, in this case for the 1st

generation. The template patterns are then applied with mutation and crossover to generate the new template

pattern to be evaluated at the subsequent generations. The crossover operation are applied in pairs and a point is

chosen and the template pattern are swapped starting at the chosen point and ending at the length of the string.

After this remaining template patterns are chosen randomly and mutation is applied to them by changing the 0 to

1 and 1 to 0 in the template patterns. In our algorithm we are taking 80% template patterns for crossover and the

remaining 20% for mutation.

Figure 2.1 below gives the fitness function for our algorithm. |S| indicates the number of input sequences in the

set S, Pj
m is number of times the pattern Pj occurred in the sub-sequences of S, Pj

v is the total number of times

that Pj is successfully matched to all sequences in S, and finally f(Pj) will give the value of fitness function

corresponding to the pattern Pj in sequence set S.

Fig (2.1)

As an improvement, in our hybrid genetic algorithm we are using hill climbing in the process of mutation and

crossover to produce good quality template patterns for next generations. For every template pattern pair we are

choosing a distinct crossover points that are randomly generated. In case of mutation again different mutation

points have been chosen for better template pattern generation. Using the Genetic algorithm ensures that the

search for the solution is spread throughout the sample space and Hill Climbing ensures finding local optima.

By combining these we extract the best out of both the algorithms and derive the good quality solution.

Hybrid Genetic Algorithm

Output: The CS of S

{Step 1. Initialize population g}

 Produced p template patterns P , choose the last sequence as the template

sequence Slast

{Step 2. Reproduced the template sub-sequences Subi}

 for i = 0 to p do

 for j = 0 to n do

 if Pi[j] = 1 then

 Subi  Slast[j]

 end if

 end for

 end for

{Step 3. Compare template sub-sequences with input sequences}

 The Fitness function(Pj)

{Step 4. Reproduced new Pj}

 Parent1 ← random(P); Parent2 ← random(P)

 Crossover(Parent1 , Parent2)

 Parent1=Hill_Climbing(Parent1)

http://www.ijesrt.com/

 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [393]

 Parent2=Hill_Climbing(Parent2)

 Parent3←random(P)

 Mutation(Parent3)

{Step 5.After repeat Step 2 to Step 4, return the CS} Termination

condition: G generations are reached or f(Phighest) is not changed in 10

consecutive generations }. CS  S1

Hybrid Genetic Algorithm MATLAB Code
tic;

s1=fileread('s1.txt');

s2=fileread('s2.txt');

s3=fileread('s3.txt');

s4=fileread('s4.txt');

s5=fileread('s5.txt');

s6=fileread('s6.txt');

loo=0;

totalinput=6;

s=[s1; s2; s3; s4; s5; s6];

n=length(s1);

for itr=1:1

 count=0;

 ntp=10000

 phighest=0;

 maxlen=power(2,20);

 ra=randperm(maxlen);

 ra=ra(1:ntp/2);

 p1 = de2bi(ra,n);

 largesttp=repmat(char(0),1,n);

 p2= randi([0 1], ntp/2,n);

 p=cat(1,p1,p2)

 for xxxx=1:100

 sub = repmat(char(0),ntp,n);

 p;

 for i=1:

 ntp

 cnt=1;

 for j=1:

 n

 if p(i,j)==1

 m=s1(j);

 sub(i,cnt)=strcat(sub(i,cnt),m);

 cnt=cnt+1;

 end

 end

 end

 pv= zeros(1,ntp);

 pm=zeros(1,ntp);

 fp=zeros(1,ntp);

 for i=1:

 ntp

 v=sub(i,:);

 len=0;

 len=length(deblank(v));

 for j=1:

 totalinput

 x=s(j,:);

http://www.ijesrt.com/

 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [394]

 cnt=1;

 for k=1:

 n

 if x(k)==v(cnt)

 cnt=cnt+1;

 end

 if (cnt-1)==len

 pm(i)=pm(i)+1;

 end

 if cnt>len

 break;

 end

 end

 pv(i)=pv(i)+cnt-1;

 end

 end

 for i=1:

 ntp

 if pm(i)==totalinput

 fp(i)=pm(i)*pv(i);

 else

 fp(i)=(-1)*(totalinput-pm(i))*pv(i);

 end

 end

 max=fp(1);

 maxtp=repmat(char(0),1,n);

 for i=1:

 ntp

 if fp(i)>0

 v=sub(i,:);

 end

 if fp(i)>=max

 max=fp(i);

 maxtp=sub(i,:);

 end

 end

 if max>phighest

 phighest=max;

 largesttp=maxtp;

 end

 count=count+1

 largesttp

 LengthOfOutput=length(deblank(largesttp))

 r=randperm(ntp);

 ntpp=(ntp*4)/5 ;

 mt=ntp-ntpp;

 r=r(1:ntpp+mt);

 if rem(ntpp,2)==0

 ntppp=ntpp/2;

 else

 ntppp=(ntpp-1)/2;

 end

 for i=1:

 ntppp

 d=randi([1 n],1,1);

 d1=randi([1 n],1,1);

http://www.ijesrt.com/

 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [395]

 if d>d1

 tmp=d;

 d=d1;

 d1=tmp;

 end

 for j=d:

 d1

 tmp=p(r(i),j);

 p(r(i),j)=p(r(ntppp+i),j);

 p(r(ntppp+i),j)=tmp;

 end

 end

 nn=10;

 for i=ntpp+1:

 ntpp+mt

 r1=randperm(n);

 r1=r1(1:nn);

 for j=1:

 nn

 p(r(i),r1(j))=1- p(r(i),r1(j));

 end

 end

 end

largesttp

end

toc;

III. RESULTS AND DISCUSSION

Tables:

Table 1. Comparison table for different algorithms on k-LCS
 DP EA BNMAS ACO GA

Population Single Single Single Single Multiple

Iterative No No No Yes Yes

Fitness Function No No No Yes Yes

Crossover No No No No Yes

Mutation No No No No Yes

No. Of

Parameters

Less Less Less More More

Accuracy Good Average Average Good Best

Time Complexity O(N2) O(kn3logn) O(σ2kn+ σ3n) - O(Gpk(n+|Pj|))

Where *k = denotes Number of String.

 *n = Length of Strings.

 * σ = | Σ|

 *G = Number of Generation

http://www.ijesrt.com/

 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [396]

As we can clearly see from the above table Genetic Algorithm provides the best time complexity when

compared to other algorithms. Now we will be comparing the accuracy of our Hybrid Genetic Algorithm with

respect to Genetic Algorithm.

Table 2: Comparing the accuracy of HGA and GA

Sequence Length Template patterns GA(|CS|/|LCS|) HGA(|CS|/|LCS|)

100 600 .8923 .9038

 1000 .9000 .9423

500 600 .5250 .9269

 1000 .5610 .9403

1000 600 .5490 .9182

 1000 .5817 .9211

The table 2 shows comparison in results of HGA and GA for string of length 100, 500 and 1000. In input is a

DNA sequence that has been randomly generated. Initial population is generated to be 600 and 1000 in all three

cases. |CS| denotes the length of common subsequence generated by GA and HGA and |LCS| denotes the actual

LCS for the input sequences. The ratio (|CS|/|LCS|) will give the accuracy of the result obtained(highest being

1). The k is taken to be 6 i.e there are 6 sequences. We can clearly see that HGA produces better results than GA

in all the cases and in some cases the result is significantly better than the GA.

The graphical results are as follows:

Graph 1: Sequence length is 100

http://www.ijesrt.com/

 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [397]

Graph 2: Sequence length is 500

Graph 3: Sequence length is 1000

http://www.ijesrt.com/

 ISSN: 2277-9655

[Rawat* et al., 6(10): October, 2017] Impact Factor: 4.116

IC™ Value: 3.00 CODEN: IJESS7

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [398]

IV. CONCLUSION
The Hybrid Genetic Algorithm (GA + Hill Climbing) has turned out to be better in case of better quality

subsequence generation when compared to the Genetic Algorithm. GA ensures that solution is optimized over

the whole solution space and hill climbing helps in optimizing the local optima. The Bio-inspired process of GA

ensures that we get better quality solutions at each iteration. After practically implementing the code we found

the results were far more optimal than the GA. In contrast to other Algorithms GA produces results at very early

stage though that might not be the optimal solution and it keeps on improving the solutions at subsequent

iterations or generations. This comes out to be useful in cases where we do not want a 100% match but

significantly low percentage of match is required, which in case of other algorithms require 100% execution of

the program and can turn out to be very time consuming.

V. REFERENCES
1. Bonizzoni, P., Vedova, G.D. and Mauri, G.: Experimenting an approximation algorithm for the LCS In:

Discrete Applied Mathematics,Vol. 110, No. 1, pp. 13–24 (2001).

2. Dorigo, M., Maniezzo, V. and Colorni, A.: Ant system- Optimization by a colony of co-operating agents.

In: IEEE Transactions on Systems, Man, and Cybernetics-Part B,Vol. 26, No. 1, pp. 29–41 (1996).

3. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequence. In:

Communications of the ACM,Vol. 18, No. 6, pp. 341–343, (1975).

4. Hirschberg, D. S.: Algorithms for the longest common subsequence problem. In: Journal of ACM, Vol.

24, pp. 664–675 (1977).

5. Huang, K.-F, Yang, C.-B. and Tseng, K.-T: An efficient algorithm for multiple sequence Alignment. In:

Proc. of the 19th Workshop on Combinatorial Mathematics and Computation Theory, Kaohsiung,

Taiwan, pp. 50–59 (2002).

6. Huang, K.-S., Yang, C.-B. and Tseng, K.-T: Fast algorithms for finding the common subsequence of

multiple sequences. In: Proceedings of International Computer Symposium, Taipei, Taiwan, pp. 90–95

(2004).

7. Hunt, J.W. and Szymanski, T.G.: A fast algorithm for computing longest common subsequences. In:

Communications of the ACM,Vol. 20, No. 5, pp. 350–353 (1977).

8. Lee, R.C.T., Chang, R.C., Tseng, S.S., and Tsai, Y.T.: Introduction to the Design and Analysis of

Algorithm - a strategic approach.ISBN 007-124346-1. In: McGraw Hill (2005)

9. Maier, D.: The complexity of some problems on subsequences and supersequences. In: Journal of the

ACM, Vol. 25, No. 2, pp. 322–336 (1978).

10. Shyu, S.-J., and Tsai, C.-Y.: Finding the longest common subsequence for multiple biological sequences

by ant colony optimization. In: Computers & Operations Research, Vol. 36, pp. 73–91, (2009).

11. Smith, R.E., Dike, B.A., and Stegmann, S.A.: Fitness inheritance in genetic algorithms. In: Proceedings

of the 1995 ACM symposium on Applied computing, Nashville, TN, USA, pp. 345–350 (1995).

12. Wagner, R.A., and Fischer, M.J.: The stringto-string correction problem. In: Journal of the ACM, Vol.

21, No. 1, pp. 168–173 (1974).

13. Tsai, Y.T., and Hsu, J.T.: An approximation algorithm for multiple longest common subsequence

problems. In: Proceeding of the 6thWorld Multiconference on Systemics, Cybernetics and Informatics,

SCI, pp. 456-460 (2002)

14. Kuo-Si Huang, C.-B.Y., and Tseng, K.-T.: Fast algorithms for Finding the common subsequence of

multiple sequences. In: Proc. of International Computer Symposium, Taipei, Taiwan, Dec. pp.15-17

(2004)

15. Julstrom, B.A., and Hinkemeyer, B.: Starting from scratch: Growing longest common subsequences with

evolution In: Proceedings of the 9th In-ternational Conference on Parallel Problem Solving From Nature

(PPSN IX), Lecture Notes in Computer Science 4193, Springer Berlin / Hei-delberg, pp. 930-938 (2006.)

16. Needleman, D.B., and Wunsch, C.D.: A general method applicable to the search for similarities in the

amino acid sequence of two proteins. In: Journal of Molecular Biology, Vol. 48, No. 3, pp. 443-453

(1970).

17. Chung-Han Chiang: A genetic Algorithm for the Longest Common Subsequences of Multiple Sequences,

January (2009).

http://www.ijesrt.com/

