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ABSTRACT 
Finding the longest common subsequence for multiple sequences are knows as k-LCS. For significant number 

and longer length sequences the k-LCS turns out to be a NP-hard problem. To solve this problem, we have 

developed a hybrid genetic algorithm that can be used to find an optimal solution in comparatively less time. 

The results obtained by our solution are comparatively better than that of EA (Expansion-algorithm), 

BNMAS(Best next maximal available symbol algorithm.), GA(Genetic algorithm) and ACO(Ant colony 

optimization algorithm). Using Hill Climbing along with Genetic Algorithm proved to be a successful 

development in finding the more optimal solution with less time complexity. As Genetic Algorithm has been 

used, the number or length of the sequences doesn’t post to be a problem and a better subsequence is obtained 

with each iteration. 

 

KEYWORDS: Mutation, Crossover, Expansion Algorithm, Genetic Algorithm, Hill Climbing. 

I. INTRODUCTION 
We have as set S of sequences such that S= {s1, s1,….,sk}, among these k-sequences we need to find the longest 

common subsequence. If subsequence X is present in all the sequences si (1 ≤ i ≤ k) then X is a CS (Common 

Subsequence) for S. E.g. lets consider a set S ={s1 = GTACTGA, s2 = ATCTGCA, s3 = CTTAGTA}.The 

sequences GA, ATA and TTGA are common sub-sequences in the strings s1, s2 and s3. TTGA is the longest 

one in all three of the common sub-sequences, so TTGA is the LCS of S. Longest Common subsequence is a 

popular problem in Computer Science [4, 5, 8, 13]. When no. of the sequences k is greater than 2 the k-LCS is 

NP-hard even over the binary input [10]. 

When k is significantly large then using the exhaustive search to search all the Common Subsequence in k 

sequences becomes challenging. Using DP (Dynamic programming) based algorithm needs O(n2) time and 

space in solving 2-LCS[17]. Many hheuristic algorithms has also been given to solve k-LCS problem..Bonizzoni 

et al. [1] proposed the EA (Expansion Algorithm). However, it wasn’t satisfactory in terms of performance. 

BNMAS (best next for maximal available symbols) algorithm [7] is given by  Huang et al. That is based upon 

the frequency of occurrence of common characters in the input sequence. Several evolutionary algorithms have 

also been proposed to ease the searching limitations. ACO (Ant colony optimization)algorithm for the k-LCS IS 

given by Shyu-and-Tsai [11]. The characteristics of ant searching for food are used to find the common sub-

sequence in S [3].  

Genetic Algorithm (GA) uses the crossover, mutation and selection which are the biologically-inspired process 

to solve the k-LCS optimization problem. An algorithm was given by Chiang et al. for solving the k-LCS 

problem [2]. The Common subsequence can be regarded as chromosomes and are evolved in further subsequent 

generations using mutation and crossover process to find the improved common sub-sequence. Fitness function 

is used as an evaluation mechanism based on it the better solutions from the chromosomes are preserved to 

create the new generation and then its utilized for evolution in the next generations [12].  

In our hybrid Genetic Algorithm we are optimizing the process of creation of initial population as well as using 

hill climbing as a optimizing technique in the process of crossover and mutation. This will help us create a faster 

and more optimal algorithm to find the solution to k-LCS. 
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II. GENETIC ALGORITHM 
Chiang et al. [2] developed Genetic Algorithm to solve the problem of k-LCS. In this algorithm the sequence 

with the smallest length is chosen from the set containing the k sequences. We choose the smallest one as our 

template sequence. In another words we randomly generate a template pattern  of 1 or 0 is  and by writing all the 

characters corresponding to 1 in template sequence, the get the final result that is the template subsequence. For 

a template sequence t = GATCTCGAGCAT and a template pattern tp = 101000011001, the generated template 

sub-sequence till be ts =GTAGT.  

The initial population set can be generated by taking k template patterns tp for k sequences in set S. All these k 

template patterns tp are then evaluated against the fitness function. The template pattern having the best fitness 

value i.e the highest non-negative value is chosen as the best solution for that generation, in this case for the 1st 

generation. The template patterns are then applied with mutation and crossover to generate the new template 

pattern to be evaluated at the subsequent generations. The crossover operation are applied in pairs and a point is 

chosen and the template pattern are swapped starting at the chosen point and ending at the length of the string. 

After this remaining template patterns are chosen randomly and mutation is applied to them by changing the 0 to 

1 and 1 to 0 in the template patterns. In our algorithm we are taking 80% template patterns for crossover and the 

remaining 20% for mutation. 

Figure 2.1 below gives the fitness function for our algorithm.  |S| indicates the number of input sequences in the 

set S,  Pj
m is number of times the pattern  Pj occurred in the sub-sequences of S, Pj

v is the total number of times  

that Pj is successfully matched to all sequences in S, and finally  f(Pj) will give the value of fitness function 

corresponding to the pattern Pj in sequence set S. 
 

  

Fig (2.1) 

As an improvement, in our hybrid genetic algorithm we are using hill climbing in the process of mutation and 

crossover to produce good quality template patterns for next generations. For every template pattern pair we are 

choosing a distinct crossover points that are randomly generated. In case of mutation again different mutation 

points have been chosen for better template pattern generation. Using the Genetic algorithm ensures that the 

search for the solution is spread throughout the sample space and Hill Climbing ensures finding local optima. 

By combining these we extract the best out of both the algorithms and derive the good quality solution. 

 

Hybrid Genetic Algorithm 

 
Output: The CS of S 

{Step 1. Initialize population g} 

 Produced p template patterns P , choose the last sequence  as the template 

sequence Slast 

{Step 2. Reproduced the template sub-sequences Subi} 

   for i = 0 to p do 

      for j = 0 to n do 

             if Pi[j] = 1 then 

                Subi  Slast[j] 

            end if 

      end for 

  end for 

{Step 3. Compare template sub-sequences with input sequences}  

   The Fitness function(Pj) 

{Step 4. Reproduced new Pj}  

   Parent1 ← random(P ); Parent2 ← random(P ) 

   Crossover(Parent1 , Parent2)  

            Parent1=Hill_Climbing(Parent1) 
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            Parent2=Hill_Climbing(Parent2) 

   Parent3←random(P ) 

   Mutation(Parent3) 

{Step 5.After repeat Step 2 to Step 4, return the CS}  Termination 

condition: G generations are reached or f(Phighest) is not changed in 10 

consecutive generations }. CS   S1  
 

 

Hybrid Genetic Algorithm MATLAB Code 
tic; 

s1=fileread('s1.txt'); 

s2=fileread('s2.txt'); 

s3=fileread('s3.txt'); 

s4=fileread('s4.txt'); 

s5=fileread('s5.txt'); 

s6=fileread('s6.txt'); 

loo=0; 

totalinput=6; 

s=[s1; s2; s3; s4; s5; s6]; 

n=length(s1); 

for itr=1:1 

    count=0; 

    ntp=10000 

    phighest=0; 

    maxlen=power(2,20); 

    ra=randperm(maxlen); 

    ra=ra(1:ntp/2); 

    p1 = de2bi(ra,n); 

    largesttp=repmat(char(0),1,n); 

    p2= randi([0 1], ntp/2,n); 

    p=cat(1,p1,p2) 

      for xxxx=1:100 

               sub = repmat(char(0),ntp,n); 

    p; 

    for i=1: 

          ntp 

          cnt=1; 

    for j=1: 

          n 

          if p(i,j)==1 

                  m=s1(j); 

    sub(i,cnt)=strcat(sub(i,cnt),m); 

    cnt=cnt+1; 

    end 

    end 

    end 

    pv= zeros(1,ntp); 

    pm=zeros(1,ntp); 

    fp=zeros(1,ntp); 

    for i=1: 

          ntp 

          v=sub(i,:); 

    len=0; 

    len=length(deblank(v)); 

    for j=1: 

          totalinput 

          x=s(j,:); 
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    cnt=1; 

    for k=1: 

          n 

          if x(k)==v(cnt) 

                  cnt=cnt+1; 

    end 

    if (cnt-1)==len 

        pm(i)=pm(i)+1; 

    end 

    if cnt>len 

    break; 

    end 

    end 

    pv(i)=pv(i)+cnt-1; 

    end  

    end  

    for i=1: 

          ntp 

        if pm(i)==totalinput 

            fp(i)=pm(i)*pv(i); 

        else 

            fp(i)=(-1)*(totalinput-pm(i))*pv(i); 

    end 

    end 

    max=fp(1); 

    maxtp=repmat(char(0),1,n); 

    for i=1: 

          ntp 

          if fp(i)>0 

                  v=sub(i,:); 

    end 

    if fp(i)>=max 

        max=fp(i); 

      maxtp=sub(i,:); 

    end 

    end 

    if max>phighest 

      phighest=max; 

      largesttp=maxtp; 

    end 

    count=count+1 

       largesttp 

       LengthOfOutput=length(deblank(largesttp)) 

       r=randperm(ntp); 

    ntpp=(ntp*4)/5 ; 

    mt=ntp-ntpp; 

    r=r(1:ntpp+mt); 

    if rem(ntpp,2)==0 

       ntppp=ntpp/2; 

    else 

       ntppp=(ntpp-1)/2; 

    end 

  

    for i=1: 

        ntppp 

        d=randi([1 n],1,1); 

    d1=randi([1 n],1,1); 
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    if d>d1 

    tmp=d; 

    d=d1; 

    d1=tmp; 

    end 

  

    for j=d: 

          d1 

          tmp=p(r(i),j); 

    p(r(i),j)=p(r(ntppp+i),j); 

    p(r(ntppp+i),j)=tmp; 

    end 

    end 

    nn=10; 

    for i=ntpp+1: 

          ntpp+mt 

          r1=randperm(n); 

    r1=r1(1:nn); 

    for j=1: 

          nn 

          p(r(i),r1(j))=1- p(r(i),r1(j)); 

    end 

    end 

    end 

largesttp 

end 

toc;     

 

III. RESULTS AND DISCUSSION 
 

Tables: 

Table 1. Comparison table for different algorithms on k-LCS 
 DP EA BNMAS ACO GA 

Population Single Single Single Single Multiple 

Iterative No No No Yes Yes 

Fitness Function No No No Yes Yes 

Crossover No No No No Yes 

Mutation No No No No Yes 

No. Of 

Parameters 

Less Less Less More More 

Accuracy Good Average Average Good Best 

Time Complexity O(N2) O(kn3logn) O(σ2kn+ σ3n) - O(Gpk(n+|Pj|)) 

 

Where *k = denotes Number of String. 

                      *n = Length of Strings. 

       * σ   = | Σ| 

       *G = Number of Generation 
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As we can clearly see from the above table Genetic Algorithm provides the best time complexity when 

compared to other algorithms. Now we will be comparing the accuracy of our Hybrid Genetic Algorithm with 

respect to Genetic Algorithm. 

 

Table 2: Comparing the accuracy of HGA and GA 

 

Sequence Length Template patterns GA(|CS|/|LCS|) HGA(|CS|/|LCS|) 

100 600 .8923 .9038 

 1000 .9000 .9423 

500 600 .5250 .9269 

 1000 .5610 .9403 

1000 600 .5490 .9182 

 1000 .5817 .9211 

 

The table 2 shows comparison in results of HGA and GA for string of length 100, 500 and 1000. In input is a 

DNA sequence that has been randomly generated. Initial population is generated to be 600 and 1000 in all three 

cases. |CS| denotes the length of common subsequence generated by GA and HGA and |LCS| denotes the actual 

LCS for the input sequences. The ratio (|CS|/|LCS|) will give the accuracy of the result obtained(highest being 

1). The k is taken to be 6 i.e there are 6 sequences. We can clearly see that HGA produces better results than GA 

in all the cases and in some cases the result is significantly better than the GA. 

 

The graphical results are as follows: 

 

 

 
 

Graph 1: Sequence length is 100 
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Graph 2: Sequence length is 500 

 

 

 
 

Graph 3: Sequence length is 1000 
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IV. CONCLUSION 
The Hybrid Genetic Algorithm (GA + Hill Climbing) has turned out to be better in case of better quality 

subsequence generation when compared to the Genetic Algorithm. GA ensures that solution is optimized over 

the whole solution space and hill climbing helps in optimizing the local optima. The Bio-inspired process of GA 

ensures that we get better quality solutions at each iteration. After practically implementing the code we found 

the results were far more optimal than the GA. In contrast to other Algorithms GA produces results at very early 

stage though that might not be the optimal solution and it keeps on improving the solutions at subsequent 

iterations or generations. This comes out to be useful in cases where we do not want a 100% match but 

significantly low percentage of match is required, which in case of other algorithms require 100% execution of 

the program and can turn out to be very time consuming. 
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